LIBPF: A LIBRARY FOR PROCESS FLOWSHEETING IN C++

Barcelona, October 4th 2006
Contents

What is Process Flowsheeting?

Market for Modeling of Continuous Processes

Tools & Options

LIBPF
What is Process Flowsheeting?

- Concentrated parameters, deterministic modelling of a continuous process based on a directed graph
 - edges are \{material, signal, energy\} streams
 - vertexes are transformations on streams
- See Westerberg et al. 1974
Any equation (set) can be seen as a directed graph

\[y = f(x) \]
Process flowsheet example

domain: chemical engineering
process: polyols from biomass

October 4th 2006
Other names for Process Flowsheeting...

- Stock-flow diagrams in econometric models
- “network structure” in LCA (Life Cycle Assessment)
- Heating Ventilation and Air Conditioning (HVAC) modelling
State of Modeling of Continuous Processes in the Industry

Required skills:
- Modeling
- Software Engineering
- Process knowledge

Challenges

Large unexploited potential
Challenges

- Single or small-series realizations of processes
- Complexity
- Safety and reliability
 Many different models used by different people in different phases of the project
Many different models 1/2

Feasibility study
Conceptual process design
Basic of pilot plant
Pilot plant data reconciliation processing and interpretation
Basic engineering of production unit
Operations
Many different models 2/2
Requirements for industrial modelling solutions

Customization
Integration
Reliability
Maintainability
Req 1: Customization

- Each project will be different
- In terms of solution provider, development tool has to be flexible
- But limit project cost otherwise it will be impossible to enter the market
Req 2: Integration

- Need for interfaces: OPC, ODBC
- Need to support different hardware:
 - Workstation
 - DCS
 - Industrial PC
- Need to support different operating systems
Req 3: Reliability

- Provide correct results if solution exists
- Provide and log errors (communication, data consistency, computation)
- Never crash
- No memory leaks (for long execution times)
Req 4: Maintainability

- Short term: low cost to fix bugs
- Long term (25 years): can upgrade, update and recompile
- Own or can freely access source code
- Own or can freely access development tools
Tools & Options

Commercial process simulators: gProms, ACM, HySys, AspenPlus, PROII, ChemCAD ...

Mathematical toolboxes: Matlab, Mathematica...

Spreadsheets (!)

Programming languages: C++, FORTRAN, Java, Phyton, ObjectPascal ...
Commercial process simulators

<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Short development time</td>
<td>- Dependence on tool provider</td>
</tr>
<tr>
<td>- Libraries of models available</td>
<td>- Can do no real research</td>
</tr>
<tr>
<td>- Can compile</td>
<td>- Small user community = big bugs</td>
</tr>
</tbody>
</table>
Mathematical toolboxes

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Reliable and easy to use</td>
<td>- Dependence on tool provider</td>
</tr>
<tr>
<td>- Libraries of models and control algorithms available</td>
<td>- Interpreted</td>
</tr>
<tr>
<td>- Can compile via C converters</td>
<td>- Objects and data structures not designed for chemical engineering</td>
</tr>
</tbody>
</table>
Programming languages

<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language is vendor-independent, international standard = Portability</td>
<td>Tough and risky</td>
</tr>
<tr>
<td>Can be faster</td>
<td>Steep learning curve</td>
</tr>
<tr>
<td></td>
<td>Maintainability ?</td>
</tr>
</tbody>
</table>
LIBPF

- Description and Scope
- Capabilities and Applications
- Design
- License
What is LIBPF?

- **LIBPF** = C++ LIBrary for Process Flowsheeting
- A collection of **objects and methods** to streamline the modelling activity
- Resolution of NLAE (Non-Linear Algebraic Equation) and DAE (Differential Algebraic Equations)
- Version 0.6, 30000 Lines Of Code (LOC)
Scope

- General purpose
- Simple models
- First principle (mass and energy balances, equilibria, rating relations)
- Concentrated parameters
- Modelling of whole processes (flowsheet)
Levels of modelling

- semiempirical, local: rule of thumb, soft sensor
- first principle, system: concentrated parameters, entire process
- first principle, local: CFD, detailed design of single unit
Capabilities 1/3

- Components:
 - fluids
 - biotech (protein, lipid, carbohydrate, ash)

- Properties:
 - ideal vapor-liquid (dilute systems)
 - SRK equation of state
Capabilities 2/3

- Unit operations:
 - mixer, 2 or more inlets
 - flow splitter (tee), 2 or more outlets
 - spawn (duplicates the inlet)
 - fixed-yield separator, 2 or 3 outlet streams
 - vapour-liquid flash
 - isentropic compressor/expander
 - reactive multi-stream heat exchanger
 - fuel cell
 - countercurrent non-reactive adiabatic HTU/NTU column
 - multistage units obtained combining any of above
Capabilities 3/3

- Flowsheet resolution:
 - Supports feedback specifications
 - Sequential (direct substitution) or Simultaneous
Applications

- Fuel cell system modelling
- Absorption/stripping
- Low pressure gas cleaning / processing
- Biotech processes
LIBPF design

- Flowsheeting in C++
- Portability
- Persistency to external database
- Small footprint calculation kernel
- Analytical derivatives
- Dimensional check of equations
Flowsheeting in C++

- A flowsheet is a parameterized graph
 - Edges = Streams
 - Vertexes = Blocks
- Can use graph algorithms to analyze connectivity, find solution path
Vertex taxonomy

- Vertex models inherit from connectivity capability
- Flowsheets can be vertexes in turn
Portability

- Mac OSX 10.2.8; GNU gcc 4.0.1
- Windows XP Professional SP2; GNU gcc 4.0.1, Microsoft Visual C++ 2005
- Debian Linux 3.1; Intel C Compiler 9.1, GNU gcc 4.0.2
Persistency to database

1. User Interface
2. Calculation kernel: console application from C++ source
3. Relational Database

GUI
Interprocess communication
.NET Database Connectivity
Access DataBase
ODBC
Calculation kernel

- Small footprint: 1 ~ 4 MB
- Standalone, no weird dependency
- Can be installed on industrial PC, i.e. Windows XP Embedded
Analytical derivatives

- In LIBPF derivatives are not obtained with numerical perturbation (finite differences).
- Derivatives are analytical, obtained without source transformation via operator overloading.
- Sparse and dense derivatives supported.
Dimensional check of equations

- We want reliable engineering computations
- Options for dimensional consistency check:
 - compile-time using template metaprogramming, very slow compile
 - run-time, slows execution but can be turned off for production executable
Dimensional check of equations

```cpp
Qdouble v; // the dimension is not known yet
Qdouble P(101325, "Pa"); // pressure
Qdouble T(298.15, "K"); // temperature
Qdouble R(8314.4, "J/(kmol*K)"); // gas constant
v = R * T / P; // now v becomes a molar volume
diagnostic(0, "Molar volume = " « v);
v = Qdouble(0.0, "kg/m3"); // error!
```

main *** Molar volume = 24.4652 kmol^-1 m^3
UOM error in function: operator=
terminate called after throwing an instance of 'errorUOM'
License

- Open source approach unsuitable
- Free academic license
- Flexible commercial licencing options
Open source approach unsuitable

- Open source does not stimulate innovation
- User community is too small
- “Hard” open source is not compatible with industry confidentiality requirements
- Current open source projects struggling (ASCEND, SIM42, OpenSim)
Free academic license

- Researchers can get compiled form (DLL/LIB) of the library complete with headers and examples
- Allowed teaching and research, but commercial uses not allowed
- Objectives:
 - Increase impact
 - Test on the field
 - Create a community
Conclusions

LIBPF can do Process Flowsheeting in C++, no need for extra tool

LIBPF can help manage the entire life cycle of a modeling solution

Flexible licencing, inclusive free academic license
Visit www.libpf.com!