

LIBPF: A LIBRARY FOR **PROCESS** FLOWSHEETING IN C++

Barcelona, October 4th 2006

Contents

What is Process Flowsheeting?

Market for Modeling of Continuous Processes

Tools & Options

LIBPF

What is Process Flowsheeting?

- Concentrated parameters, deterministic modelling of a continuous process based on a directed graph
 - edges are {material, signal, energy} streams
 - vertexes are transformations on streams
- See Westerberg et al. 1974

Any equation (set) can be seen as a directed graph

Process flowsheet example

domain:

chemical

engineering

process:

polyols from biomass

Other names for Process Flowsheeting...

- Stock-flow diagrams in econometric models
- "network structure" in LCA (Life Cycle Assessment)
- Heating Ventilation and Air Conditioning (HVAC) modelling

State of Modeling of Continuous Processes in the Industry

- ■Required skills:
 - Modeling
 - Software Engineering
 - Process knowledge

Challenges

Large unexploited potential

Challenges

Single or small-series realizations of processes

Complexity

Safety and reliability

Many different models used by different people in different phases of the project

Many different models 1/2

Feasibility study
Conceptual process design
Basic of pilot plant
Pilot plant data reconciliation processing and interpretation
Basic engineering of production unit
Operations

Many different models 2/2

PROCESS ENGINEER

PROCESS
LICENCE SALESGUY

PLANT OPERATOR

CONTROL SPECIALIST

Requirements for industrial modelling solutions

Customization

Integration

Reliability

Maintainability

Req 1: Customization

- Each project will be different
- In terms of solution provider, development tool has to be flexible
- But limit project cost otherwise it will be impossible to enter the market

Req 2: Integration

- Need for interfaces: OPC, ODBC
- Need to support different hardware:
 - Workstation
 - ◆ DCS
 - ◆ Industrial PC
- Need to support different operating systems

Req 3: Reliability

- Provide correct results if solution exists
- Provide and log errors (communication, data consistency, computation)
- Never crash
- No memory leaks (for long execution times)

Req 4: Maintainability

- Short term: low cost to fix bugs
- Long term (25 years): can upgrade, update and recompile
- Own or can freely access source code
- Own or can freely access development tools

Tools & Options

Commercial process simulators: gProms, ACM, HySys, AspenPlus, PROII, ChemCAD ...

Mathematical toolboxes: Matlab, Mathematica...

Spreadsheets (!)

Programming languages: C++, FORTRAN, Java, Phyton, ObjectPascal ...

Commercial process simulators

pros	cons
■ Short development	■ Dependence on tool
time	provider
Libraries of models	■ Can do no real
available	research
■ Can compile	Small user community =
	big bugs

Mathematical toolboxes

pros cons Reliable and easy to Dependence on tool provider use Libraries of models and Interpreted control algorithms Objects and data available structures not designed Can compile via C for chemical engineering converters

Programming languages

pros	cons
 Language is vendor- independent, international standard = Portability Can be faster 	Tough and riskySteep learning curveMaintainability ?

LIBPF

- Description and Scope
- Capabilities and Applications
- Design
- License

What is LIBPF?

- LIBPF = C++ LIBrary for Process Flowsheeting
- A collection of objects and methods to streamline the modelling activity
- Resolution of NLAE (Non-Linear Algebraic Equation) and DAE (Differential Algebraic Equations)
- Version 0.6, 30000 Lines Of Code (LOC)

Scope

- General purpose
- Simple models
- First principle (mass and energy balances, equilibria, rating relations)
- Concentrated parameters
- Modelling of whole processes (flowsheet)

Levels of modelling

- semiempirical, local: rule of thumb, soft sensor
 LIBPF
- first principle, system: concentrated parameters, entire process
- first principle, local: CFD, detailed design of single unit

24 di 41

Capabilities 1/3

- Components:
 - fluids
 - biotech (protein, lipid, carbohydrate, ash)
- Properties:
 - ideal vapor-liquid (dilute systems)
 - SRK equation of state

MARKET

TOOLS

LIBPF

Capabilities 2/3

- Unit operations:
 - mixer, 2 or more inlets
 - flow splitter (tee), 2 or more outlets
 - spawn (duplicates the inlet)
 - fixed-yield separator, 2 or 3 outlet streams
 - vapour-liquid flash
 - isentropic compressor/expander
 - reactive multi-stream heat exchanger
 - fuel cell
 - countercurrent non-reactive adiabatic HTU/NTU column
 - multistage units obtained combining any of above

26 di 41

Capabilities 3/3

- Flowsheet resolution:
 - Supports feedback specifications
 - Sequential (direct substitution) or
 - Simultaneous

Applications

- Fuel cell system modelling
- Absorption/stripping
- Low pressure gas cleaning / processing
- Biotech processes

LIBPF design

- Flowsheeting in C++
- Portability
- Persistency to external database
- Small footprint salculation kernel
- Analytical derivatives
- Dimensional check of equations

Flowsheeting in C++

- A flowsheet is a parameterized graph
 - Edges = Streams
 - ◆ Vertexes = Blocks
- Can use graph algorithms to analyze connectivity, find solution path

Vertex taxonomy

- Vertex models inherit from connectivity capability
- flowsheets can be vertexes in turn

Portability

- International Standard "Programming Language C++" ISO/IEC 14882:1998
- Mac OSX 10.2.8; GNU gcc 4.0.1
- Windows XP Professional SP2; GNU gcc 4.0.1, Microsoft Visual C++ 2005
- Debian Linux 3.1; Intel C Compiler 9.1, GNU gcc 4.0.2

Persistency to database

- User Interface
- Calculation kernel: console application from C++ source
- Relational Database

Calculation kernel

- Small footprint: 1 ~ 4 MB
- Standalone, no weird dependency
- Can be installated on industrial PC, i.e.
 Windows XP Embedded

Analytical derivatives

- In LIBPF derivatives are not obtained with numerical perturbation (finite differences)
- Derivatives are analytical, obtained without source transformation via operator overloading
- Sparse and dense derivatives supported

Dimensional check of equations

- We want reliable engineering computations
- Options for dimensional consistency check:
 - compile-time using template
 metaprogramming, very slow compile
 - run-time, slows execution but can be turned off for production executable

LIBPF

Dimensional check of equations

```
main *** Molar volume = 24.4652 kmol^-1 m^3
UOM error in function: operator=
terminate called after throwing an instance of
   'errorUOM'
```

License

Open source approach unsuitable

Free academic license

Flexible commercial licencing options

WHAT?

MARKET

TOOLS

LIBPF

Open source approach unsuitable

- Open source does not stimulate innovation
- User community is too small
- "Hard" open source is not compatible with industry confidentality requirements
- Current open source projects struggling (ASCEND, SIM42, OpenSim)

Free academic license

- Researchers can get compiled form (DLL/LIB) of the library complete with headers and examples
- Allowed teaching and research, but commercial uses not allowed
- Objectives:
 - Increase impact
 - Test on the field
 - Create a community

Conclusions

LIBPF can do Process Flowsheeting in C++, no need for extra tool

LIBPF can help manage the entire life cycle of a modeling solution

Flexible licencing, inclusive free academic license

Visit www.libpf.com!

