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Abstract

A systematic sensitivity analysis requires computing the model on all points of a multi-dimensional 

grid covering the domain of interest, defined by the ranges of variability of the inputs.

The issues to efficiently perform such analyses on algebraic models are handling solution failures 

within  and  close  to  the  feasible  region and minimizing  the  total  iteration  count.  Scanning the 

domain in the obvious order is sub-optimal in terms of total iterations and is likely to cause many 

solution failures. 

The problem of choosing a better order can be translated geometrically into finding Hamiltonian 

paths on certain grid graphs.

This work proposes two paths, one based on a mixed-radix Gray code and the other, a quasi-spiral 

path,  produced  by  a  novel  heuristic  algorithm.  Some  simple,  easy-to-visualize  examples  are 

presented,  followed  by  performance  results  for  the  quasi-spiral  algorithm  and  the  practical 

application of the different paths in a process simulation tool.
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1. Introduction

One of  the  best  ways  to  understand the  capabilities  and  limitations  of  a  model  of  a  physical, 

chemical or social system is to study the sensitivities to the inputs.

But the term sensitivity analysis is used with different meanings in physical sciences, engineering, 

econometrics and statistics. The differential or local sensitivity [1, 2] involves the calculation of 

derivatives of the model,  which can be also used for numerical solution and optimization.  The 



global sensitivity for uncertainty analysis [3 – 7] is based on random or pseudo-random sampling of 

the inputs of the model. A third meaning that is more common in engineering disciplines [8 – 10] 

involves systematically computing the value of the model on all points of a multi-dimensional grid 

that covers the domain of interest;  this  type of sensitivity analysis  can be called a “systematic  

sensitivity analysis“. Indeed systematic sensitivity analyses have a variety of applications:

• To find out what the feasible ranges are for solving the model;

• To study the non-linear sensitivity of the outputs on the inputs;

• To generate  performance  maps  or  look-up  tables  that  can  be  interpolated  with  simpler, 

explicit algebraic functions or supplied to neural networks for training;

• To identify regions with different modes of operation;

• To visualize the model predictions graphically using 3-D or parametric plots;

• To test the model or the model performance (execution time) etc.

When the model is formulated algebraically, from the mathematical point of view it is a complex, 

multi-variable function; often the function is implicit, and the resulting large-scale system of non-

linear algebraic equations (NLAE) has to be solved iteratively. Each function evaluation is therefore 

expensive in terms of processing time, and the required number of iterations is dependent on how 

close the next point is to the last solved point, as the current results are used as starting values for 

the unknowns. 

If  the  starting  point  is  too  distant  from the  desired  solution,  the  NLAE  solver  may  fail;  for  

resiliency, after a failure the solver state must be recovered by resetting or reverting to a previous 

successful solution - but that comes at a cost. Finally, a solution may exist only in a subset of the 

domain (the feasible region), whose form and extension is rarely known a priori. The domain of 

interest where the systematic sensitivity analysis is computed typically overlaps and encloses the 

feasible  region  but  also  inevitably  includes  some  non-feasible  points.  The  solver  will  almost 

certainly fail at non-feasible points, and it is also likely to fail at points close to the unfeasible 

region - but often that is precisely where the interesting results lie.

The most obvious way to perform a systematic sensitivity analysis is to scan the multi-dimensional 

grid one "line" at a time, in the same way we scan the lines of text when we read. On a two-

dimensional grid, the resulting path looks like a zigzag line (see Figure 1).

The zigzag path can easily be generalized to higher dimensions as shown below, but it  is  sub-

optimal in two aspects:

1) The  "carriage  returns"  when  a  line  scan  is  complete  and  the  next  line  is  started  cause 

discontinuities (“jumps”) with a large change to one or more manipulated variables, which 



go from their maximum values back to the minimum;

2) In general before the start of the sensitivity, the solver state may be such that the current  

values  for  the  manipulated  variables  lie  somewhere  inside  the  domain,  so  there  is  one 

additional discontinuity (visualized in Figure 1 by the starting arc) to move to the first point 

of the sensitivity located on the boundary of the domain;

3) The central region of the domain will likely be feasible, but the regions close to the border 

could be unfeasible; the zigzag path will visit the borders very soon, potentially causing 

early NLAE solver failures.

So it would be convenient to find different, better orders for visiting the points on the grid and 

performing the systematic  sensitivity analysis  while  minimizing discontinuities  and visiting the 

borders as late as possible.

2. Proposed method

To reduce the discontinuities the first improvement is to switch from "left-to-right" or "right-to-left" 

reading to boustrophedon reading. In boustrophedon reading lines are alternatively read "left-to-

right" and "right-to-left" (see Figure 2). In this way only one manipulated variable is changed at a 

time, and the variable changes are minimal with the exception of the initial discontinuity (second 

issue above).

It turns out that there is a large class of paths that fulfill the two requirements of changing only one 

manipulated variable at a time, and keeping the variable changes minimal. To describe this class of 

paths, it is necessary to introduce more detailed algebraic and geometrical descriptions, with their 

notation and definitions.

Assuming that  n input variables of the steady-state process model are manipulated, variable 0 is 

varied over m0  points identified with integers running between 0 and m0−1 , variable 1 over 

m1  points between 0 and m1−1 , variable 2 over m2  points between 0 and m2−1  ... and 

finally variable  n-1  is  varied  over  mn−1  points  between 0 and  mn−1−1 .  In  the  algebraic 

description each of the 
i∈[0 ..n−1]

mi  points in the resulting multi-dimensional grid can be identified 

by a vector of n positive integers (a "tuple" i.e. an ordered list of elements), each with a different  

maximum constraint. This algebraic representation also highlights the fact that the grid is a subset 

of the ℤn  lattice, the space of vectors of positive integers.

The ai  elements of this vector can be written as row-vectors in the straightforward order of an 

increasing index  a0,a1, a2...an−1 , but for the purpose of this application it is more suitable to 

write  them as  row-vectors  in  order  of  a  decreasing  index  (an−1 ...a2,a1,a0) .  This  notation  is 



consistent with the big-endian convention for ordering of individually addressable sub-components 

within a longer data item in computing, and with the ordering commonly used in writing numbers.  

This in turn suggests that the tuple written in decreasing index order can be interpreted as a mixed-

radix number. A side effect of this interpretation is that an ordering on the points in the grid can be 

automatically obtained by sorting these numbers lexicographically, i.e. by counting in increasing 

order. The lexicographical ordering is the same as the zigzag path mentioned above, and provides 

its generalization for more than two dimensions.

To describe the boustrophedon path rigorously and to generalize it to a more general class of well-

behaved  paths  that  avoid  discontinuities  a  geometrical  description  based  on  graph  theory  is 

required.

"Well-behaved" paths are those that fulfill the requirement of keeping the variable changes at each 

step minimal. In "strictly well-behaved" paths only one manipulated variable can be changed by one 

grid unit in each step, i.e. only moves to adjacent points are acceptable and no "diagonal" moves. In  

"loosely well-behaved" paths one or more manipulated variables can be simultaneously changed by 

one grid unit, i.e. only moves to adjacent points are allowed, including "diagonal" moves.

The allowed moves can be visualized on the  ℤn lattice by connecting the points that can be 

reached from each point. If no diagonal moves are allowed and all adjacent points are connected 

with orthogonal edges, then each internal point has 2⋅n  neighbors (points on the boundary have 

2⋅n−1...n  neighbors depending on the dimension of the boundary) and the resulting undirected 

graph is called grid graph, see [11]. A grid graph in two-dimensions is shown in Figure 3. If it were 

permitted to change a manipulated variable from the last value back to the first value and vice versa 

(what amounts to a very large discontinuity), then all points would have 2⋅n  neighbors, and the 

grid graph would be embedded on a multi-dimensional torus rather than on the Euclidean space.

If diagonal moves are allowed and the non-orthogonal edges between adjacent points are added to 

the grid graph, then each internal point has 3n−1  neighbors (points on the boundary may have 

2⋅3n−1
−1... 2n

−1 neighbors  depending  on  the  dimension  of  the  boundary)  and  what  can  be 

defined as a “dense grid graph” is obtained. A dense grid graph in two-dimensions is shown in 

Figure 4.

On this basis it is possible to rigorously define a strictly well-behaved path as a Hamiltonian path (a 

path that visits each vertex exactly once) on the grid graph, and a loosely well-behaved path as a 

Hamiltonian path on the dense grid graph. In the literature on databases and image compression, 

several  Hamiltonian  paths  on  the  grid  graph  are  described,  and sometimes  called  space-filling 

curves: such as the Peano curve, the Hilbert curve and the Z-curve, see for example [12]. But these 

curves are not relevant here because their properties are not helpful for this application.

Returning to an algebraic point of view, Hamiltonian paths on grid graphs are also related to mixed-



radix Gray codes [13]. A Gray code [14] is an ordering of integers where two successive values 

differ  by  only  one  digit.  The  original  Gray  code  was  proposed  in  [15]  to  solve  certain 

communication problems for binary digits. When Gray codes are applied to digits in bases higher-

than-two, there are two possibilities: non-modular Gray where the transitions 0 to m-1 and m-1 to 0 

are not acceptable, and modular Gray where these transitions are acceptable; this distinction does 

not make sense for binary digits  since 0 to 1 and 1 to 0 are the only two possible transitions.  

Modular Gray codes correspond to Hamiltonian paths on grid graphs embedded on tori so they 

should be ruled out due to  their  large discontinuities;  on the other hand, mixed-radix,  or more 

precisely (m0,m1,m2 ...mn−1) -radix non-modular Gray codes match the definition of strictly well-

behaved  paths  above.  There  are  many  possible  binary  Gray  codes,  and  even  more  possible 

m0,m1,m2 ...mn−1 -radix non-modular Gray codes. The simplest one is the reflected mixed-radix 

Gray code,  where  each digit  moves from 0  to  mi  and  back to  0 and so on,  and the  least-

significant digits are changed more often.

A loop-less  algorithm  to  generate  this  sequence  and  conversions  with  ordinary  numbers  are 

provided  in  [16].  An  algorithm to  generate  the  sequence  with  loops  is  presented  in  [17].  The 

reflected  mixed-radix  Gray code  ordering  is  coincident  with  the  boustrophedon  path  proposed 

above, and provides its generalization for more than two dimensions.

Mixed-radix non-modular Gray codes solve the first issue mentioned above in paragraph 1. But the 

second issue of avoiding the discontinuity on start,  and the third issue of delaying visiting the 

borders for as long as possible, are still to be addressed. Both the lexicographical ordering and the 

reflected mixed-radix Gray code ordering visit the borders of the domain too early and too often:  

they actually start from the boundary. What is required to address both issues is a Hamiltonian path 

on the dense grid graph that starts near the center of the domain and moves spiraling outwards, so 

that the most extreme regions are visited as late as possible. Such a path is trivial to draw on the 

two-dimensional grid as a square spiral (Figure 5). But the square spiral has the limitation that it can 

only cover grids, completely and without overflows, if the number of points in one direction differs 

by  zero  or  one  from  the  number  of  points  in  the  other  direction.  Also  there  is  no  known 

generalization of the square spiral to higher dimensions.

For these reasons a novel heuristic algorithm was developed that enumerates the points on the grid 

in a sequence that approximates the multi-dimensional spiral with a quasi-spiral. It is based on a 

definition for the distance between points in the sense of the infinity-norm ∥.∥∞ , i.e. the positive 

integer obtained as the maximum absolute value of the difference of any digit: max
i

∣ai−b i∣ .

The quasi-spiral path tries to monotonically increase the distance from the initial point while the 

distance of each point from the previous one (if possible) equals 1: the relaxation of the requirement 



that it should be a Hamiltonian path on the dense grid graph is necessary to avoid dead-locks. The 

algorithm is simple and only relies on integer arithmetic; it allows the pre-computation of the direct  

and  reverse  mapping  between  the  lexicographical  ordering  and  the  quasi-spiral.  Once  this 

initialization has been performed, increment and look-up can be performed. The algorithm pseudo-

code is reproduced in the Appendix.

3. Algorithm implementation

The algorithm has been implemented in C++ and integrated in LIBPF™ 1.0 (LIBrary for Process 

Flowsheeting), [18], a process flow-sheeting and modeling tool arranged as a C++ library.

The typical architecture of a LIBPF™ application for interactive process flow-sheeting (see Figure 

6) consists of two processes, one user interface process and one calculation kernel; both processes 

interact with a relational database for data persistency and transfer. The user interface will start a 

kernel process when a calculation is requested by the user, sending certain basic information as 

arguments on the command line. The two processes interact via the database for exchanging inputs, 

configuration  settings  and  results,  so  the  direct  inter-process  communication  is  limited  to 

controlling the second process (starting and stopping), handling the process start and finish events 

and processing the diagnostic output.

To implement the multi-dimensional sensitivity analysis,  the direct inter-process communication 

between the user interface and the calculation kernel was extended by providing a supplementary 

data  transfer  mechanism,  based  on  two files  encoded  as  Extensible  Markup Language  (XML) 

according to [19]. The first XML file is for sending the sensitivity input from the user interface to 

the  calculation kernel,  and the  second XML file  is  for  sending the sensitivity results  from the 

calculation kernel back to the user interface. For documentation and for enforcing constraints on 

their structure and content both files have an associated XML Schema, in accord with [20].

To maximize interactivity, results are fed back to the user interface as soon as they are available, by 

having the kernel generate a new sensitivity results XML file after each steady-state process model 

evaluation, and by having the user interface react to a file-changed event emitted by the file-system 

to rescan the XML file and load the new results; furthermore the sensitivity analysis can be stopped 

and restarted and the user can interactively change the sensitivity analysis calculation order between 

lexicographical order, reflected decimal Gray code and quasi-spiral.

Due to the split architecture of LIBPF™, it was necessary to duplicate most of the code related to  

the sensitivity ordering on both the user interface and the kernel sides, since the former must be 

aware of how to convert between the row ordering on the sensitivity results as they are shown to the 

user (lexicographical order, albeit little-endian) and the calculation order, while the latter must be 

able to enumerate the points in the calculation order from any point of the sequence (in case of 



restarts).

The LIBPF™ User Interface is open source so its source code can be obtained from [21] and reused 

in accord with [22].

4. Results and discussion

In paragraph 4.1 some simple examples of grids with a few tens of points are presented, to visualize 

the different paths.

Next, in paragraph 4.2, the performance results for the novel quasi-spiral heuristic algorithm when 

applied to the enumeration of large sensitivity analysis grids are shown. 

Finally,  in  paragraph 4.3,  the three orderings  are  applied  to  real-world examples  of  systematic 

sensitivity analyses of steady-state process models.

4.1 Simple examples

In the first examples only n = 3 input variables are manipulated, resulting in easy-to-visualize three-

dimensional grids. Furthermore all the mi  are set equal to 3, so that base-three digits are used to 

identify the coordinates of each point. This means that each variable is varied over  m = 3 points 

between 0 and m – 1 = 2, and the Π
i∈[0,1,2]

3=27  points in the resulting three-dimensional grid are 

identified by tuples that can be interpreted as ternary numbers. For example the tuple 123 has a2

=1, a1 =2 and a0 =3, consistent with the big-endian or decreasing index notation.

The lexicographical ordering for the (3,3,3)-grid is listed in Table 1; in these tables the digits that 

change in the transition from one point to the next are highlighted in bold: note how 1, 2 or even 3 

digits are changed at once in the lexicographical ordering. The same path is visualized in Figure 7; 

in all these figures a color coding for the path is used, with a red-violet-blue-green-yellow-orange 

sequence used to hint at the order in which the points are visited. The reflected decimal Gray code 

ordering is listed in Table 2 and is visualized in Figure 8; note how only one digit is ever changed at 

a time (no diagonals) in Gray code ordering. The quasi-spiral path computed with the proposed 

algorithm starting from the center of the domain is listed in Table 3 and is visualized in Figure 9. 

Here 1, 2 or even 3 digits are changed at once as well, but in this case the algorithm is successful in  

avoiding long “jumps”: in fact this path is a Hamiltonian path on the dense grid graph.

Actually the algorithm is  not always successful in this sense,  as the last  example in Figure 10 

shows: here the relaxation of the requirement that the path should be a Hamiltonian path on the 

dense grid graph is exploited to avoid the dead-lock in 40, causing a 4-step jump from 40 to 44.



4.2 Performance

The  performance  of  the  quasi-spiral  heuristic  algorithm  was  examined  when  applied  to  the 

enumeration of large systematic sensitivity analyses, on a typical low-end workstation. When there 

are many points or more than three dimensions it is impossible to check graphically or by inspection 

that the algorithm is really following a well-behaved path and at the same time spiraling outwards, 

so  the  criteria  on  the  distance  of  each  point  from  the  previous  point  and  the  monotonically 

increasing distance from the initial point were numerically tested.

The tests with six-dimensional sensitivities (Table 4) having an increasing number of steps in each 

dimension,  show that  the  steps  longer  than  one  (the  “jumps”,  that  indicate  a  violation  of  the 

requirement that the path should be a Hamiltonian path on the dense grid graph) are in the order of 

1% of the points, decreasing down to 0.2% with three million points. The backward steps, that 

indicate the spiraling is sometimes inwards rather than outward, happen about 0.5% of the time; 

sensitivities with an even number of points in each direction seem to cause comparatively more 

backward steps. When the number of dimensions is constant, there is a linear dependence of the 

execution time on the number of points.

When the same number of points (about one million) is enumerated by changing the number of 

dimensions (Table 5) the frequency of “jumps” is constant at about 0.2%, while the frequency of 

backward steps decreases linearly with the dimensions. This observation can be explained by the 

increased number of escapes and shortcuts available in higher-dimensional spaces.

When the number of points is constant, the execution time displays an exponential dependence on 

the number of dimensions.

The algorithm execution time is less than one second for a practical number of points (less than 

10000).

4.3 Practical examples

The  performance  of  the  different  paths  has  been  tested  against  two  real-world  examples  with 

LIBPF™.

The first practical example is the flash of a mixture of four linear-chain hydrocarbons (C3 to C6) 

over a wide range of compositions, at fixed vapor fraction and pressure, using a cubic equation of  

state.  In  this  case  the problem only has  a  feasible  solution  at  pressures  lower than  the critical 

pressure  of  the  mixture,  which  in  turn  depends  on  the  composition.  The  three-dimensional 

sensitivity analysis was performed with 21 steps in the molar fraction of each of the first three 

components (a total of 9261 points), varying them between 0.00001 and 0.325388. The results, in 

terms of performance and number of flash failures at vapor fraction equal to 0.9 and pressure levels 

between 0.1 and 4.5 MPa, are shown in Table 6.



The reflected Gray and the quasi-spiral orderings are both 30% faster than the lexicographical order 

in the feasible pressure range (0.4 – 2.5 MPa), but there is no definite advantage in the quasi-spiral.  

At  unfeasible  pressures  (higher  than  3.5  MPa)  the  number  of  convergence  failures  increases 

dramatically, with the reflected Gray ordering performing about one order of magnitude better than 

the lexicographical order and consistently outperforming the quasi-spiral ordering in terms of total 

computation  time;  note  that  here  the  performance  results  are  non-reproducible  and  heavily 

dependent on the details of the NLAE solver resiliency and error recovery functionality. 

For this example all benefits can be reaped with the reflected Gray ordering, and the quasi-spiral 

ordering has no advantage; the sorting of the components has been chosen so that the starting point 

for the lexicographical and the reflected Gray paths will be at low molar fractions for all the lighter 

components, with 99.997% of C6: a composition which very likely has the highest possible mixture 

critical  pressure.  Also  due  to  the  big-endian  convention,  the  molar  fraction  of  the  lightest 

component (C3), which is represented by the “most-significant” digit, will be increased last. In other 

words, the non-spiral orderings will start from the safe side, and carefully creep towards the non-

feasible area. The quasi-spiral ordering on the other hand will start around the center of the domain, 

so in this case it is likely to hit the non-feasible regions first.

The second practical example is based on the hybrid molten carbonate fuel cell-gas turbine (MCFC-

GT) energy plant described in [23]. In that reference a two-dimensional sensitivity was performed 

to  study  the  effect  of  the  operating  pressure  and  MCFC  fuel  feed  flow-rate  on  the  total  net  

electricity output and the plant electrical efficiency. A square spiraling path was used to scan the 

domain because it turned out to be more robust than other orderings.

One of the main outcomes of that work was that scaling down the electrical power output resulted 

in a decrease in efficiency, because of the limited flexibility of the gas turbine sub-system (GTS). 

Consequently it was suggested in the conclusions that the control strategy of the GTS should be 

improved. This hinted at including the nominal compressor mass flow as a third parameter in the 

analysis, assuming to control the flow/load of the GTS by manipulating the geometry of the turbo-

machinery in addition to the frequency as was the case in the reference. 

A new, three-dimensional sensitivity analysis was performed on the same MCFC-GT energy plant, 

varying not only the pressure and fuel flow but also the nominal compressor mass flow, with 19 

steps in each of the three variables (a total of 6859 points). The input parameters and their ranges 

are shown in Table 7, the results in terms of performance and number of convergence failures in 

Table 8.

The  results  show  that  the  reflected  Gray  and  the  quasi-spiral  orderings  outperform  the 

lexicographical one by a factor of two or three in terms of both total calculation time and fraction of 



converged points, whereas the quasi-spiral and the reflected Gray orderings behave equivalently.

It should be noted that in both examples the starting point and the extension of the domain have 

been chosen with a good understanding of the form of the feasible region.

5. Conclusions

Performing a systematic sensitivity analysis of an algebraic, non-linear model by scanning the grid 

along a lexicographically sorted path is not the best option because of the discontinuities, large 

changes in manipulated variables and visiting the border regions too early.

Two alternative  well-behaved orderings  are  proposed  in  this  work,  one  based on the  reflected 

mixed-radix Gray code and the other, a quasi-spiral path produced by a novel heuristic algorithm. 

The heuristic algorithm is simple and only relies on integer arithmetic to generate the quasi-spiral; 

its execution time is negligible for practical grids, and has a linear dependence on the number of 

points  for a constant  number of  dimensions,  and an exponential  dependence on the number of 

dimensions for a constant number of points.

The two alternative orderings have been implemented in a process simulation tool, demonstrating 

significant performance and stability gains with respect to the lexicographical path, when applied to 

real-world problems. The reflected mixed-radix Gray code is optimal if the shape of the feasible 

region is known in advance so that the path can start from a safe point. The quasi-spiral is most 

suited  for the initial  assessment phases,  when the form of the feasible region is  unknown, and 

sensitivity analysis are used to explore its boundaries.

Appendix

The algorithm pseudo-code to generate the quasi-spiral path is:

round = 0

current = initial

add current point to the set of visited points

direct[round] = current

reverse[current] = round

increment round

while there is any point left to visit, start

  set the acceptable distance to 1, i.e. start looking for points adjacent to 

the current point in the sense of the dense grid 

  clear the list of suitable points

  while the list of suitable points is empty, start

    check all neighbors which have distance from the current point lower or 

equal to the acceptable distance



    if the neighbor has not jet been visited

add the neighbor to the list of suitable points

    increase by 1 the acceptable distance 

  end

  sort the list of suitable points in order of increasing distance from the 

initial point

  set the current point to the first suitable point

  add current point to the set of visited points

  direct[round] = current

  reverse[current] = round

  increment round

end

last = current
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Figures

Figure 1 - Zigzag scanning path (lexicographical ordering) in 2 dimensions



Figure  2  -  Boustrophedon  scanning  path  (reflected  mixed-radix  Gray  code  ordering)  in  2 

dimensions



Figure 3 – Grid graph on a small two-dimensional grid



Figure 4 – Dense grid graph on a small two-dimensional grid



Figure 5 – Square two-dimensional spiral 



Figure 6 – LIBPF™ standalone architecture



Figure  7  –  Lexicographical  ordering  on  a  three-dimensional  grid  having  three  steps  in  each 

direction, with start in point 000 and end in point 222.

Figure 8 –  Reflected Gray code ordering on a three-dimensional grid having three steps in each 

direction, with start in point 000 and end in point 222.



Figure 9 – Quasi-spiral ordering on a three-dimensional grid having three steps in each direction, 

with start in point 111 and end in point 220.



Figure 10 – Quasi-spiral ordering on a two-dimensional grid having five steps in each direction, 

with start in point 22 and end in points: 43, 42, 41, 30, 40 and 44.

Tables

0 000 9 100 18 200

1 001 10 101 19 201

2 002 11 102 20 202

3 010 12 110 21 210

4 011 13 111 22 211

5 012 14 112 23 212

6 020 15 120 24 220

7 021 16 121 25 221

8 022 17 122 26 222
Table 1 – Lexicographical ordering for the (3,3,3)-grid.



0 000 9 122 18 200

1 001 10 121 19 201

2 002 11 120 20 202

3 012 12 110 21 212

4 011 13 111 22 211

5 010 14 112 23 210

6 020 15 102 24 220

7 021 16 101 25 221

8 022 17 100 26 222
Table 2 – Reflected Gray code ordering for the (3,3,3)-grid; the digits that change in the transition 

from one point to the next one are in bold - note how only 1 digit is changed at a time.

0 111 9 021 18 120

1 222 10 020 19 121

2 112 11 110 20 022

3 001 12 100 21 122

4 000 13 101 22 211

5 010 14 102 23 202

6 011 15 201 24 212

7 002 16 200 25 221

8 012 17 210 26 220
Table 3 – Quasi-spiral ordering for the (3,3,3)-grid, with initial point in the middle of the domain.

Dimensi

ons

Number 

of steps in 

each 

dimension

Total 

points

Steps 

longer than 

one 

(“jumps”)

Backward 

steps

Longest 

step
Timing, s

Specific 

timing,

s/(1 M points)

6 1 1 0 0 1 0,008 8000,0

6 2 64 0 0 1 0,009 140,6

6 3 729 15 0 2 0,037 50,8

6 4 4096 31 24 3 0,21 51,0

6 5 15625 131 26 4 1,06 67,7

6 6 46656 228 229 5 3,7 79,3

6 7 117649 600 188 6 10,97 93,2

6 8 262144 830 1266 7 27,9 106,5

6 9 531441 1917 932 8 64,8 121,9

6 10 1000000 2407 4466 9 148,4 148,4



6 11 1771561 5468 3333 10 251,4 141,9

6 12 2985984 5704 13220 11 443,2 148,4
Table 4 – Performance for the enumeration of 6-dimensional sensitivity analysis tables.

Dimensi

ons

Number 

of steps in 

each 

dimension

Total 

points

Steps 

longer than 

one 

(“jumps”)

Backward 

steps

Longest 

step Timing, s

Specific 

timing, s/(1 M 

points)

3 100 1000000 18 1382 50 16,9 16,9

4 32 1048576 956 8245 22 29,5 28,1

5 16 1048576 2067 9633 15 60,5 57,7

6 10 1000000 2407 4466 9 125,4 125,4

7 7 823543 1980 511 6 230,0 279,2
Table 5 – Performance for the enumeration of sensitivity analysis tables with about one million 

points and varying number of dimensions.

P, MPa

Total calculation time, s Convergence failures

Lexicograp

hical

Reflected 

Gray

Quasi-

spiral

Lexicograp

hical

Reflected 

Gray

Quasi-

spiral

0.1 270 140 183 79 0 27

0.2 225 129 154 36 0 0

0.3 202 161 186 17 0 1

0.4 179 153 151 6 0 0

0.5 169 148 131 4 0 0

1 181 118 123 24 0 0

1.5 200 113 118 33 0 0

2 149 117 113 12 0 0

2.5 146 115 112 16 0 0

3 179 145 118 39 28 3

3.5 836 199 557 468 51 306

4 3992 309 774 2772 91 424

4.5 2455 496 400 1663 215 153

Table 6 – Results for  for the three-dimensional sensitivity (9261 points) on the vapor-liquid flash 

with a cubic equation of state.

Variable Description Units Start End



P Operating pressure MPa 0.4 0.3

S01:Tphase.ndot Molar flow of natural gas to fuel cell mol/s 1.67 0.556

mc0 Nominal compressor mass flow kg/s 1.667 1.111
Table  7  – Input  parameters  and ranges  for  the  three-dimensional  sensitivity  on the  MCFC-GT 

energy plant

Lexicographical Reflected Gray Quasi-spiral

Total calculation time (s) 7447 2586 2850

Convergence failures 73280 1059 21219

Total number of iterations 130746 46402 49372

Fraction of converged points 56 % 98 % 92 %

Average  iterations  for  each  converged 

point

3.8 3.6 4.2

Table 8 – Results for three-dimensional sensitivity (6859 points) on the MCFC-GT energy plant
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