

Model based soft-sensors based on OPC Unified Architecture

Paolo Greppi, consultant, 3iP, Italy

POWER-GEN Europe 2010 Conference June 10th, 2010 Amsterdam

Presentation outline

- The problem
- Old solution
- New solution
- An example
- Future outlook

3 stories

- 1) supplier of plants packages
- 2) automation supplier
- 3) operating company

Story 1: supplier of plants packages

- Provide fully-automated, self-diagnostic, selfoptimizing, "intelligent" units
- Adapt and customize the package units to the ever-changing specifications with minimal effort and risks
- Make the package units easier to deploy by adapting to the customers' industrial information technology infrastructure

Story 2: automation supplier

- Flexible design: react to project changes
- Diverse environment: open standards
- Maintainability: follow seamlessly the changes during the operation phases
- Avoid risky reconfiguration or manual adaptation of custom interfaces

Story 3: operating company

- Adapt to load changes
- Handle day-night fluctuations in the electricity price
- Handle feedstock changes: variable-by-design feedstocks such as biomasses, but fossil fuels change quality continuously too
- Adjust the production mix the demand (cogeneration or trigeneration)

intelligent

integrationadapt

change

flexibility

optimize

smart

market

unmanned operation

low-risk

customize

Protocols & interfaces

- 4-20 mA
- SMART
- HART
- Ethernet
- Sattbus
- Modbus
- Profibus / Fieldbus

- EDAS
- CIP
- CIM-IO
- IEC 870-5-101/104
- http / https
- ODBC
- WCF
- Classic OPC

Classic OPC

Classic OPC is a set of de-facto standards

http://www.opcfoundation.org

- For interfacing between process automation (SCADA, PLC, DCS) and the rest of IT
- Time span: 1996 2005
- Based on COM technology (Microsoft, 1993)

Resulting industrial IT architecture

OPC UA (Unified Architecture)

 OPC UA (Unified Architecture) is a single defacto standard, evolution of Classic OPC

http://www.opcfoundation.org

- Time span: 2006 ...
 - Based on SOA
 - Platform-independent (non-Microsoft specific)
 - Object-oriented
 - Semantic: domain-specific information models

SOA (Service Oriented Architecture)

business process

service

interoperable software module

before SOA

after SOA

OPC UA: platform-independent

Mainframe

Multiple OPC APIs

Microsoft .NET

Controllers Embedded

Systems

protocols allow cross-platform communication

OPC UA object oriented: types

OPC UA object oriented: instances

OPC UA: architecture

OPC UA: semantic

- Domain-specific information models for:
 - device information
 - analyser devices
 - plant operation and maintenance
 - batch control
 - PLC programming
 - process simulation capabilities ?

Soft sensors

Soft-sensors = replace real sensors with virtual, calculated results

- Model-driven first principle models
- Data-driven based on raw data manipulation
 - Principle Component Analysis (PCA)
 - Partial Least Squares (PLS)
 - Artificial Neural Networks (ANN).

The soft-sensor of the example

 gas-chromatograph measures the composition of a a material stream composed of short-chain hydrocarbons

- Soft-sensor computes:
 - Lower / higher heating value and Wobbe-Index;
 - LEL / UEL (lower and upper explosive limits) and LOC (limiting oxygen content);
 - Density, compression factor and temperature / pressure dew-point and bubble-point with an equation of state specific for Natural Gas (GERGER-GEN

LIBPF: LIBrary for Process Flowsheeting

Modular Software Development Kit (SDK) for process flowsheeting

- Object-oriented C++ library:
 - Components, physical properties, phases, streams, unit operations and flowsheets
 - Tools: solvers, input/output, object persistency, communication interfaces

Classic OPC soft sensor

- OPC DA 2.0.4 client
- Placeholder tags have to be defined in the OPC server
- Configuration via XML file
- Start / stop as an operating system service

Honeywell

POWER-GEN

OPC UA process simulation information model

OPC UA node types from LIBPF objects

OPC UA soft sensor prototype

LIBPF objects are exposed as OPC UA nodes at runtime

OPC UA soft sensor features

- Runs on both Windows and Linux
- Could even be integrated directly into the device (gas-chromatograph, fiscal meter)
- No configuration files
- The configuration can be performed using any 3rd party OPC UA client, thanks to the discovery and browsing capabilities

Future work for us

- Complete the prototype, implementing additional OPC UA interfaces:
 - the node creation interface: clients can browse the hierarchy of available types known to the server, and request that one of them should be instantiated at run-time
 - the state machine information model: clients can configure the valid / invalid states and their triggers
 - the program interface: clients can start / stop soft sensors individually without starting / stopping the service / daemon

Future work for the community

- Agree on a domain-specific information model for on-line application of process models on top of OPC Unified Architecture stack:
 - Process modeling objects: Components, phases, streams, unit operations
 - On-line modeling applications: Soft sensors, process simulation, advanced control, model predictive control, plant-wide mass balance reconciliation, operator training

PLUG INTO POWER

OPC Unified Architecture (UA): a new platformindependent standard for **interoperability** between enterprise information systems and **industrial automation**

OPC UA could reshape the automation industry and the business models in the *process* simulation and optimization and in the real-time process optimisation and training sectors

